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Abstract. 
  Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll data were assimilated with an 
established three-dimensional global ocean model.  The assimilation improved estimates of 
chlorophyll relative to a free-run (no assimilation) model.  Compared to SeaWiFS, the annual bias 
of the assimilation model was 5.5%, with an uncertainty of 10.1%.  The free-run model had a bias 
of 21.0% and an uncertainty of 65.3%.  In situ data were compared to the assimilation model over a 
6-year time period from 1998 through 2003, indicating a bias of 0.1%, and an uncertainty of 33.4% 
for daily coincident, co-located data.  SeaWiFS bias was slightly higher at -1.3% and nearly 
identical uncertainty at 32.7%.  The free-run bias and uncertainty at -1.4% and 61.8%, respectively, 
indicated how much the assimilation improved model results.  Annual primary production estimates 
for the 1998-2003 period produced a nearly 50% improvement by the assimilation model over the 
free-run model as compared to a widely used algorithm using SeaWiFS chlorophyll data.  These 
results suggest the potential of assimilation of satellite ocean chlorophyll data for improving model 
results. 
 
Introduction 
   There is no substitute for observations in the effort to understand the oceans’ biogeochemical 
cycles.  However, observations alone cannot allow a full understanding.  They are necessarily 
limited in time and space.  This is true even for remote-sensing observations, which are generally 
limited to the surface and to once-daily temporal frequencies.  Often the most important variables in 
the oceanic system, such as carbon and nutrients, are not directly observed.  For example, ocean 
color sensors detect chlorophyll concentrations, which are related to organic carbon.  But 
chlorophyll is not necessarily carbon, surface observations are not necessarily representative of the 
water column, and biomasses are not necessarily indicative of fluxes. 
   Numerical models can potentially connect the satellite observations, and provide meaningful 
information that observations cannot.  Numerical models have no time or space limitations.  They 
can translate the observations into the key geophysical variables that directly affect the oceans’ 
biogeochemical cycles.  And they can convert the remote sensing snapshots into fluxes.  Finally, 
since numerical models are constructed with fundamental principles of ocean physics, biology, 
geochemistry, and radiative transfer, they can potentially provide understanding of the causes for 
distributions and changes seen in the remote sensing observations.  
   In practice, models are deficient in their representation of processes and interactions, and 
consequently their outputs stray from the observations.  If they can be inextricably linked to the 
observations, then models can provide greatly enhanced understanding of biogeochemical cycling, 
by identifying the nature of the deficiencies and providing clues to improvement, as well as by 
nudging model variables toward realism. 
   Coupling models and data together through data assimilation is among the tightest and most 
intimate interrelationships as exists in computational Earth sciences research.  In the data 
assimilation method, the model results are constrained by the observations.  It is a field of research 
that has many aspects and challenges, but it can potentially be rewarding, since it maximizes the 
value of the data, but at the same time allows the fundamental processes in the model to act 
naturally.   
   Here an existing coupled general circulation, biogeochemical, and radiative model of the global 
oceans is used as a platform to assimilate Sea-viewing Wide Field-of-view Sensor (SeaWiFS) 
chlorophyll data products.  The model can potentially enable us to investigate biogeochemical 
pathways, fluxes, and reservoirs, as well as the underlying processes, to produce a better 
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understanding of the ocean system and how it operates.  However, given the lack of maturity of data 
assimilation for ocean biology and biogeochemistry, the more limited objective in this effort is to 
improve estimates of surface chlorophyll and depth-integrated primary production, respectively.  
This effort represents an initial attempt to assimilate remote sensing ocean color data in a global 
model. 
 
Background 
   Data assimilation can be classified into two groups, inverse (variational) methods and forward 
(sequential) methods (Anderson et al., 2000).  Although a complete description of the specific 
methods is beyond the scope of this paper, a brief overview can help distinguish the classes.  The 
inverse, or variational, methods construct a cost function, which is a measure of the difference 
between model output and observations over a specified time and space interval.  Minimization of 
this cost function is the goal of the inverse methodology subject to constraint by the model 
(McGillicuddy et al., 1998), in which model parameters, boundary and initial conditions, and 
forcing functions can be involved.  Minimization methods are quite varied in ocean ecosystem 
studies, including gradient steepest descent (Natvik et al., 2001), conjugate gradient method 
(Fasham et al., 1995, 1999), simulated annealing (Hurtt and Armstrong, 1996, 1999), and a micro-
genetic algorithm (Schartau and Oschlies, 2003), among others (see Table 1).  The most popular 
method in ocean biology has been the adjoint method.  This is an efficient optimization method that 
reduces the large number of required iterations by first finding the gradient of the cost function, 
although iteration is still required.  The inverse methods optimally modify model parameters using 
information from the data at the time of the model output, and reverse the flow of information back 
to the model at the time of its initial condition, hence the term inverse.   
   The focus of most work on inverse marine biological applications has been on parameter 
estimation, i.e., to analyze and improve model performance by adjusting parameters to conform to 
observations.  Inverse methods are quite well-suited to parameter optimization and also have the 
advantage of mass conservation (Anderson et al., 2000).  Improvement in model parameterizations 
has largely been achieved as measured by reducing model-data misfits as the direct result of 
application of inverse methods.  However, the parameter adjustments tend to be specific to the 
particular model formulation, and may not be applicable for other models or applications.  The 
methods can also be computationally expensive for complex models and large areas. 
   The forward class of data assimilation methods operates on the outputs of the model, rather than 
its internal parameters.  A model field is created after an integration (time) step, which is then 
combined with the observations to produce an analysis or best state estimate.  In the simplest case, 
the analyzed field is then used to re-initialize the model for the next execution step.  The model 
parameters remain fixed in the method but the model outputs are driven toward the observations 
through constant confrontation with data.  Examples of this type of assimilation are direct data 
insertion (Ishizaka, 1990), nudging (Armstrong et al., 1995), optimal interpolation (Popova et al., 
2002), and various implementations of the Kalman filter.  This class of methods is most appropriate 
for improved state and flux estimation, i.e., to produce more accurate derived variables, such as 
chlorophyll and primary production.  Forward methods have limited ability for parameter estimation 
beyond that which can be achieved though a reasonably comprehensive validation effort and they 
do not conserve mass or flux, but they do have a reasonable computational cost. 
   Assimilation of satellite ocean color data is a relatively new phenomenon in ocean sciences.  
There now exists a long uninterrupted time series of high quality data beginning with SeaWiFS 
(data set beginning in Sep 1997), and the Moderate Resolution Imaging Spectroradiometer 
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(MODIS)-Aqua (data set beginning in Jul 2002).  Despite the recent proliferation of remote sensing 
data, relatively few data assimilation studies have utilized it (Table 2).  Hemmings et al., (2003, 
2004) used inverse methods in a 0-dimensional representation of the North Atlantic to refine model 
parameters.  Results were mixed, as the assimilation improved chlorophyll concentrations in some 
areas, but seasonal variability was poorly represented.   Losa et al. (2004) used inverse methods 
with Coastal Zone Color Scanner (CZCS) data in a 0-dimensional simulation of the North Atlantic.  
Spatial patterns of chlorophyll were much improved using the optimized model as compared to a 
CZCS composite for 1979-1985.  Some of the problems, especially in coastal areas and high 
latitudes, were attributed to data error.  Friedrichs (2002) used SeaWiFS data in a 1-dimensional 
adjoint assimilation in the equatorial Pacific Ocean.   Her emphasis was on model diagnosis and 
parameter estimation, and used the time series from Sep 1997 to Apr 1998.  She found that 
assimilation of SeaWiFS 8-day composites could only provide realistic parameter sets when a 
portion of the time series was excluded.  This was attributed to a change in ecosystem dynamics 
during this period and inadequacy of the 5-component model to represent it.  She emphasized the 
importance and utility of inverse methods for model formulation.  Garcia-Gorriz et al. (2003) also 
assimilated SeaWiFS data using the adjoint method.  They studied the Adriatic Sea in Jan and Jun 
1998.  By varying recovered parameter sets, months, and portions of Adriatic Sea, they found 
misfits (biases in this case) between the assimilation and SeaWiFS ranging from 79% (more than 
the unassimilated model) to 22%.  The best case improvement occurred in the Southern portion of 
the sea in Jun.  Data error was found to be an important consideration for application of the adjoint 
method. 
   Although Schlitzer (2002) and Oschlies and Schartau (2005) used in situ data in their inverse 
assimilations, they used SeaWiFS data to evaluate their results.  Schlitzer (2002) estimated export 
production (derived from primary production from SeaWiFS) in the Southern Ocean to be 2-5 times 
higher in the assimilation model than in SeaWiFS.  This was attributed to the inability of ocean 
color sensors to detect sub-surface chlorophyll and/or errors in the conversion from primary to 
export production.  Oschlies and Schartau (2005) used an inverse method at three stations in the 
North Atlantic, and applied it to the entire basin.  Primary production results from the assimilation 
model compared favorably with estimates using CZCS data, but agreement of spatial patterns and 
temporal variability of chlorophyll between the model and SeaWiFS 5-year mean chlorophyll 
(1997-2002) was lacking.      
   Utilizing a forward data assimilation methodology, Ishizaka (1990) directly inserted CZCS 
chlorophyll into a 3-dimensional model of the southeast US coast.  Immediate improvements in 
chlorophyll were observed this multivariate assimilation but did not hold for more than 2 days.  
Cross-shelf fluxes of chlorophyll were reduced, because the unassimilated model appeared to 
overestimate chlorophyll, but the temporal variability was unaffected.  Armstrong et al., (1995) used 
a nudging method with CZCS data in the North Atlantic.  Initial results motivated a major change to 
the model configuration, which then showed good comparisons with CZCS chlorophyll.  The ratio 
of assimilated chlorophyll to CZCS chlorophyll (a measure of the bias) ranged from 0.9 to 1.1 over 
most of the North Atlantic, when expressed as zonal means, with values >1.5 in the equatorial 
region.   
   A forward assimilation approach for state estimation using modern ocean color data was 
employed by Natvik and Evensen (2003a,b).  They used SeaWiFS data with an Ensemble Kalman 
Filter (EnKF) assimilation in a three-dimensional model of the North Atlantic.  SeaWiFS errors 
were specified at 35% based on pre-launch goals (Hooker et al., 1992).  Model errors were assumed  



Table 1.  Previous efforts in assimilation of in situ and simulated data for ocean biological/ecological studies.  The table is divided into 
those utilizing inverse methods and those using forward methods. 
 
Inverse Methods 
Authors Assimilation Method Model  

Dimension 
Location Assimilation  

Data Source 
Fasham et al., 1995 Conjugate Gradient Method 0D Northwest Atlantic (BATS) In situ 
Fasham et al., 1999  Conjugate Gradient Method 0D Northeast Atlantic In situ 
Natvik et al., 2001 
   

Gradient Steepest Descent/ 
Conjugate Gradient Method 

0D Arbitrary Simulated 

Harmon & Challenor, 1997 Markov Chain Monte Carlo 0D Arbitrary Simulated 
Hurtt & Armstrong, 1996 Simulated Annealing 0D Northwest Atlantic (BATS) In situ 
Hurtt & Armstrong, 1999 Simulated Annealing 0D North Atlantic (BATS & OWSI) In situ 
Matear, 1995 Simulated Annealing 0D Northeast Pacific (Station P) In situ 
Weber et al., 2005 Micro Genetic Algorithm 0D Northwest Atlantic (BATS) In situ 
Lawson et al., 1996 Adjoint 0D Arbitrary Simulated 
Fennel et al., 2001  Adjoint 0D Northwest Atlantic (BATS) In situ 
Schartau et al., 2001  Adjoint 0D Northwest Atlantic (BATS) In situ 
Spitz et al., 1998  Adjoint 0D Northwest Atlantic (BATS) In situ 
Spitz et al., 2001 Adjoint 0D Northwest Atlantic (BATS) In situ 
Vallino, 2000  Adjoint 0D Arbitrary In situ 
Kuroda & Kishi, 2004 Adjoint 0D Northwest Pacific In situ 
Leredde et al. 2005 Adjoint 0D Arbitrary Simulated 
Oschlies & Schartua, 2005 Micro Genetic Algorithm 1D  North/Equatorial Atlantic In situ 
Schartau & Oschlies, 2003 Micro Genetic Algorithm 1D North Atlantic (3 stations) In situ 
Friedrichs, 2001 Adjoint 1D Equatorial Pacific Simulated 
Faugeras et al., 2003 Adjoint 1D Mediterranean Sea In situ 
Faugeras et al., 2004 Adjoint 1D Mediterranean Sea In situ 
Prunet et al., 1996 Adjoint 1D Northeast Pacific (Station P) In situ 
Miller et al., 2000  Green’s function 3D California coast In situ 



Gunson et al., 1999 Adjoint 3D North Atlantic Simulated 
Schlitzer, 2002  Adjoint 3D Southern Ocean In situ 
 
 
Forward Methods 
Authors Assimilation Method Model  

Dimension 
Location Assimilation  

Data Source 
Losa et al., 2003 SIR Sequential Importance 

Resampling filter 
0D Northwest Atlantic (BATS) In situ 

Eknes and Evensen, 2002 Ensemble Kalman Filter 1D Arbitrary Simulated 
Allen et al., 2002  Ensemble Kalman Filter 1D Cretan Sea In situ 
Hoteit et al., 2003 Singular Evolutive Extended 

Kalman filter 
1D Cretan Sea In situ 

Ibrahim et al., 2004 Singular Evolutive Extended 
Kalman filter 

1D Cretan Sea In situ 

Magri et al., 2005 Singular Evolutive Extended 
Kalman filter 

1D Ligurian Sea In situ 

Carmillet et al., 2001 Singular Evolutive Extended 
Kalman filter 

3D North Atlantic Simulated 

Triantafyllou et al., 2003 Singular Evolutive 
Interpolated Kalman filter 

3D Cretan Sea Simulated 

Anderson et al., 2000  Optimal Interpolation 3D Gulf Stream In situ 
Besiktepe et al., 2003 Optimal Interpolation 3D Massachusetts Bay In situ 
Popova et al., 2002 Optimal Interpolation 3D Northeast Atlantic In situ 
 



 
Table 2.  Data assimilation efforts in ocean biological/ecological studies using satellite data.  CZCS indicates the historical sensor 
Coastal Zone Color Scanner that flew from late 1978 to mid-1986. 
 
Authors Assimilation 

Method 
Class 

Specific Assimilation Method Model  
Dimension

Location Satellite 
Assimilation 
Data Source 

Hemmings et al.,  2003 Inverse Conjugate Direction Set Method 0D  North Atlantic (30 sta) SeaWiFS 
Hemmings et al.,  2004 Inverse Conjugate Direction Set Method 0D  North Atlantic (30 sta) SeaWiFS 
Losa et al., 2004  Inverse Maximum Data Cost criterion 0D North Atlantic CZCS 
Friedrichs, 2002  Inverse Adjoint 1D Equatorial Pacific SeaWiFS 
Garcia-Gorriz et al., 2003 Inverse Adjoint 3D Adriatic Sea SeaWiFS 
Ishizaka, 1990   Forward Insertion 3D Southeast US coast CZCS 
Armstrong et al., 1995 Forward Nudging 3D Atlantic CZCS 
Natvik & Evensen, 2003a,b Forward Ensemble Kalman Filter 3D North Atlantic SeaWiFS 
Gregg, 2006 
(present effort) 

Forward Conditional Relaxation Analysis 
Method 

3D Global SeaWiFS 
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Figure 1.  Pathways and interactions among the components of the NASA Ocean Biogeochemical Model (NOBM).

to be related to atmospheric forcing data, specifically wind stress and surface temperature.  Their 
results showed the EnKF was capable of providing an updated state consistent with SeaWiFS, 
including both phytoplankton and nitrate in a multi-variate analysis, over the period April and May 

1998.  However, quantitative expressions for the agreement were difficult to interpret. 
   In the present effort, a type of forward assimilation model is used in a global context with multi-
year SeaWiFS data with explicit observation error accounting.  The emphasis is on state and flux 
estimation; specifically, improved estimates of surface chlorophyll and depth-integrated primary 
production, respectively.  Quantitative measures and statistical analyses are utilized to evaluate the 
effects of data assimilation in a global context.   
 
Methods 
Coupled Three-Dimensional Circulation/Biogeochemical/Radiative Model of the Global Ocean 
   A diagrammatic representation of a fully coupled general circulation/ biogeochemical/radiative 
model, called the NASA Ocean Biogeochemical Model (NOBM), illustrates the complex 
interactions among the three major components, ocean general circulation, radiative, and 
biogeochemical processes models (Figure 1).  The Ocean General Circulation Model (OGCM) is a 
reduced gravity representation of circulation fields (Schopf and Loughe, 1995).  It is global in scale, 
extending from near the South Pole to 72o N, in increments of 2/3o latitude and 1 1/4o longitude, 
comprising all regions where bottom depth > 200m.  The model contains 14 vertical layers, in 
quasi-isopycnal coordinates, and is driven by wind stress, sea surface temperature, and shortwave 
radiation (Table 3). 
   The biogeochemical processes model contains 4 phytoplankton groups, 4 nutrient groups, a single 
herbivore group, and 3 detrital pools (Figure 2).  The phytoplankton groups differ in maximum 
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growth rates, 
sinking rates, 
nutrient require-
ments, and optical 
properties.  The 4 
nutrients are nitrate, 
regenerated am-
monium, silica to 
regulate diatom 
growth, and iron.  
Three detrital pools 
provide for storage 
of organic material, 
sinking, and even-
tual reminerali-
zation back to 
usable nutrients.  
This results in 12 
state variables in 
the fully coupled 
model.  Atmo-
spheric deposition 

of iron and sea ice are required as an external forcing fields (Table 3). The biogeochemical 
processes model is fully described in the Appendix. 
   Radiative transfer calculations provide the underwater irradiance fields necessary to drive growth 
of the phytoplankton groups, and interact with the heat budget.  The Ocean-Atmosphere Radiative 

Model (OARM; Gregg, 
2002a) contains a treatment of 
the spectral and directional 
properties of radiative transfer 
in the oceans, and explicitly 
accounts for clouds.  The 
atmospheric radiative model is 
based on the Gregg and Carder 
(1990) spectral model, 
extended to the spectral 
regions 200 nm to 4 μm.  It 
requires external monthly 
climatologies of cloud 
properties (cloud cover and 
liquid water path), surface 
pressure, wind speeds, relative 
humidity, precipitable water, 

and ozone (Table 3).  Aerosols are considered to be strictly of marine origin and are computed as in 
Gregg and Carder (1990). 

Diatoms

Biogeochemical Processes Model

Chloro-
phytes

Cyano-
bacteria

Cocco-
lithophores

Si

NO3

NH4

Herbivores

N/C
Detritus

Fe

Silica
Detritus

PhytoplanktonNutrients

Iron
Detritus

Figure 2.  Pathways and interactions among the components of the Biogeochemical Processes model, comprising 4 
phytoplankton groups, 4 nutrient groups, a single herbivore group and 3 detrital components.  

-------------------------------------------------------------------------------------------------------------------------- 
Table 3.  Forcing data sets required to force NOBM, their purpose, and sources of data.  NCEP is the National Center for 
Environmental Prediction, TOMS is the Total Ozone Mapping Spectrometer, ISCCP is the International Satellite Cloud 
Climatology Project, OISST is the Optimum Interpolated Sea Surface Temperature product, and GOCART is the Global 
Ozone Chemistry Aerosol Radiation and Transport model (Ginoux et al., 2001).  Daily data are used for the 2001
assimilation analyses, and monthly data are used for the 1997-2003 analyses. 
 
General Circulation Model 
Variable     Purpose     Source 
Wind stress    Surface forcing   NCEP Reanalysis 
Sea surface temperature    Surface forcing                        OISST 
Shortwave radiation   Surface forcing    NCEP Reanalysis 
 

 
Biogeochemical Process Model 
Variable     Purpose    Source 
Aerosol composition   Surface input (iron)  GOCART 
Sea ice     Surface forcing   OISST  
 
Radiative Transfer Model 
Variable     Purpose    Source  
Wind speed    Surface reflectance/Aerosols NCEP Reanalysis 
Precipitable water   Water vapor absorption   NCEP Reanalysis 
Surface pressure    O2 absorption/Rayleigh scattering NCEP Reanalysis 
Relative humidity    Marine aerosols   NCEP Reanalysis 
Ozone     Gaseous absorption   TOMS 
Cloud cover    Cloud distribution     ISCCP 
Cloud liquid water path   Cloud attenuation properties    ISCCP 
 
------------------------------------------------------------------------------------------------------------------- 
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   Oceanic radiative properties are driven by water absorption and scattering, the optical properties 
of the phytoplankton groups, and chromophoric dissolved organic matter (CDOM).  Three 
irradiance paths are enabled: a downwelling direct path, a downwelling diffuse (scattered) path, and 
an upwelling diffuse path.  All oceanic radiative calculations include the spectral nature of the 
irradiance.   
Data Assimilation 
   The data assimilation methodology used here is the Conditional Relaxation Analysis Method 
(CRAM; Oort, 1983).  The method is used for bias correction in Optimal Interpolation Sea Surface 
Temperature (OISST) data (Reynolds, 1988; Reynolds and Smith, 1994), and has been used 
successfully for ocean color in situ-satellite applications (Gregg and Conkright, 2001; 2002; 
Conkright and Gregg, 2003).  CRAM uses data to provide an internal boundary condition, which 
here is the satellite ocean chlorophyll and solves for an analyzed chlorophyll field of model and data  

                                   ∇2CT(ana) =  ∇2CT(model)                                                    (1) 
where CT(ana) is the final analyzed field of total chlorophyll and CT(model) is the model field (sum 
of the 4 phytoplankton groups).  Insertion of satellite chlorophyll into the model field serves a bias-
correction function.  The matching of Laplacian’s of the model chlorophyll and model/satellite 
chlorophyll extends the bias correction away from the satellite data points, while maintaining the 
higher order model variability.  Because of the wide range of chlorophyll over the global oceans (>3 
orders of magnitude), model and satellite data are logarithmically-transformed (base 10) before 
application of Eq. 1.  The analyzed chlorophyll is transformed back to natural units for re-
initialization of the next model integration.  The analyzed chlorophyll is the sum of the 4 
phytoplankton components, and is distributed among the functional groups to retain the previous 
model-derived relative abundances:   

ΔCT = CT(ana) – CT(model)                                                   (2) 
CT(model) = ∑i Ci                                                             (3) 

fi = Ci(model)/CT(model)                                                     (4) 
Ci(ana) = Ci(model) + fiΔCT                                                   (5) 

where ΔCT (Eq. 2) is the difference between the analyzed total chlorophyll, CT(ana), using CRAM 
and the model, CT(model).  This is called the analysis increment.  CT(model) is the total chlorophyll 
(sum of all 4 phytoplankton components, Eq. 3), Ci is the ith phytoplankton chlorophyll component, 
and fi is the fraction of the ith phytoplankton component of the total chlorophyll.   
   Data assimilation is performed daily, to remove aliases associated with sampling by SeaWiFS 
(i.e., cloud cover, sun glint, inter-orbit gaps), that are incorporated in 8-day and monthly data 
products.  Assimilation occurs at model midnight. 
   CRAM is computationally very fast, so much that there is nearly negligible additional processing 
time in its use.  However, it is very strongly weighted toward the data.  Thus data errors are an 
important problem in its application.  For this reason, data errors must be minimized to the extent 
possible.  In the present application, data error minimization efforts involve: 
1)  All daily SeaWiFS chlorophyll > 2 times the monthly mean are excluded 
2)  SeaWiFS data are weighted 25% monthly mean to 75% daily data 
3)  SeaWiFS data occurring within a model grid point containing ice are excluded 
4)  Regional weighting of model and SeaWiFS chlorophyll is enforced (Figure 3) 
   The fourth data error minimization is based on analyses by Gregg and Casey (2004) indicating 
regions where SeaWiFS tends to perform poorly compared to in situ data.  It is also partly based on 
assimilation trial-and-error: where the assimilation produces negative values of any of the model 
variables or where unrealistic values occur, heavier weighting toward the model is enforced.  
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Typically the two circumstances overlap.  For example, excessively high chlorophyll concentrations 
are produced by the assimilation in the Congo and Amazon/Orinoco River discharges.  These are 
regions dominated by CDOM, which produce erroneous chlorophyll values in satellite retrievals.  
These regions were shown to have a poor comparison with in situ data (Gregg and Casey, 2004).  
Similar problems occur with respect to regions where light-absorbing dust is prevalent, such as the 
tropical Atlantic and North and Equatorial Indian Oceans (Gregg and Casey, 2004).  The regional 
model weighting factors used in the assimilation are shown in Figure 3.   
Data Sets 
   Global chlorophyll data from SeaWiFS were obtained from the NASA Ocean Color Web site at 
daily and monthly, 9-km resolution.  The data set version number was 5.1.  The data were re-
mapped to the model grid before assimilation and comparison.   
   Forcing data sets are shown in Table 3.  Soil dust data sets were available only for the period Jan 
2000 through Jul 2002.  Climatologies were created to provide data when needed outside this 
period.   
   In situ chlorophyll data were obtained from the SeaWiFS Bio-Optical Archive and Storage 
System (SeaBASS; Werdell and Bailey, 2002) and the NOAA/National Oceanographic Data Center 

(NODC)/Ocean Cli-
mate Laboratory 
(OCL) archives 
(Conkright et al., 
2002a).  This was an 
updated version of the 
same combined data 
set used by Gregg and 
Casey (2004).  The in 
situ data were re-
mapped to the model 
grid on a daily basis.   
Performance Eva-
luation 
   SeaWiFS data as-
similation is eval-
uated in the context of 
chlorophyll (state 
estimation) and pri-

mary production (flux estimation).  For chlorophyll, monthly mean values of the assimilation model 
are compared with monthly mean SeaWiFS chlorophyll.  Analyses involve the percent error 

  C(assim)-C(sat) 
Percent Error (PE)   =  --------------------- x 100                                             (6) 

C(sat) 
 
where CT(assim) is the assimilation model chlorophyll (which differs from CT(ana) because it is the 
result of the assimilation process where CT(ana) is used to re-initialize the model), and CT(sat) is the 
satellite (SeaWiFS) chlorophyll. 

Figure 3.  Regional model weighting factors along with delineation of the major oceanographic basins.  There are 3 
special cases, with outlines delineated on the figure: A) Amazon River outflow region, B) Mauritanian offshore region, 
and C) Congo River outflow region. In these sub-regions, higher weighting is used depending upon the satellite 
chlorophyll concentration.  In the Amazon and Congo outfow region (A and C)

if C(sat) > 2 mg m-3, then weight = 1.0
else if C(sat) > 1 mg m-3, then weight = 0.9

In the Mauritanian offshore region (B)
if C(sat) > 1 mg m-3, then weight = 0.9
else if C(sat) > 0.5 mg m-3, then weight = 0.75

A

B

C

0.85 0.25 0.5

0.5

0.5
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   Monthly percent errors are computed over the entire model domain where SeaWiFS and 
assimilation model chlorophyll values are co-located, and the bias is estimated using the median of 
the percent errors: 

 
Monthly Median Percent Error (MMPE) = median(PE)                                  (7) 

 
   The median was chosen for error analysis because of the lognormal distribution of chlorophyll 
data (Campbell, 1995).  Logarithm transforms are common in such circumstances but percent errors 
are difficult to obtain and interpret.  The median is nearly independent of the distribution of the data 
and is thus a useful, simple, and easy-to-interpret representation of the bias regardless of the 
distribution, and naturally incorporates the percent error.   
   The annual error is computed as the mean of the monthly median percent error over the 12 months 
of the year 

 
                                                       MMPE 

Annual Mean Percent Error (AMPE)  =    -------------                                 (8) 
                                                         12 

 
Use of the mean of the monthly medians to obtain an annual value is reasonable because the 
MMPE’s are normally distributed.  This is confirmed by observation that the median of the 
MMPE’s produces nearly the same value. 
   The uncertainty, or dispersion of the data, is represented by the Annual Semi-Interquartile Range 
(ASIQR)   
 

Monthly Semi-Interquartile Range (MSIQR) = IQR(PE) * 0.5                               (9) 
  

                                                                                                     MSIQR 
Annual Semi-Interquartile Range (ASIQR)  =    --------------                             (10) 

                                                                                                                                                                                                                                                                                                          12 
 
The interquartile range (IQR) encompasses all data between the 25th percentile and the 75th 
percentile of the data.  One–half this value, the Semi-Interquartile Range (SIQR), is analogous to the 
standard deviation for normally-distributed data, in that the median + SIQR contains 50% of the 
data.  The difference is that the mean + standard deviation encompasses 68% of the data. 
   Assimilation model annual errors are also evaluated by comparison with those from the free-run 
(control, i.e., no assimilation) model.  The assimilation frequency is also adjusted, by assimilating 
every 2 days, 3 days, etc. instead of daily assimilation, to observe error growth.   
   Additionally, SeaWiFS, free-run model, and assimilation model chlorophyll are compared against 
the large data base of in situ chlorophyll data from NASA/SeaBASS and NOAA/NODC.  Analyses 
involve use of the bias and uncertainty defined similarly to the monthly analysis defined in Eqs. 6-
10 except compiling all daily data over the 6-year time span into a single representation of error, 
where in situ data and satellite/model data are coincident and co-located.   
                                                         CT(assim) – CT(is) 

Percent Error (PEis)   =  ------------------------- x 100                                                 (11) 
                                                                   CT(is) 
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Median Percent Error (MPE) = median(PEis)                                          (12) 
 

Semi-Interquartile Range (SIQR) = IQR(PEis) * 0.5                                     (13) 
where CT(is) indicates chlorophyll concentration of in situ data and PEis is the percent error of the 
assimilated chlorophyll relative to the in situ chlorophyll. 
   Primary production provides a means to evaluate the ability of the assimilation model to improve 
flux estimates.  Primary production is computed in the model as a function of growth rate multiplied 
by the carbon:chlorophyll ratio: 
                                                          PP = ∫  ∑μiCi  Φ dz                                                       (14) 
where μi is the realized new growth rate of phytoplankton component i, Ci is the chlorophyll 
concentration of component i, Φ is the carbon:chlorophyll ratio, and the product is integrated over 
depth.  Assimilation of chlorophyll affects the total chlorophyll but not the relative abundances of 
the phytoplankton groups,  μ, or Φ directly.  All three can be affected by the assimilation of 
chlorophyll indirectly, however, by changing the irradiance in the water column and the horizontal 
and vertical gradients of phytoplankton and nutrients.  Free-run model-computed primary 
production is compared with model-computed primary production derived from assimilated 
chlorophyll and finally against primary production derived directly from satellite chlorophyll data 
using the Vertically Generalized Production Model (VGPM; Behrenfeld and Falkowski, 1997).  The 
VGPM requires chlorophyll, SST, and photosynthetically available radiation (PAR) as inputs.  
Chlorophyll is taken from SeaWiFS, SST is the same source as used for model forcing (Table 3), 
and PAR is derived from the atmospheric component of OARM, with wavelength region 350-700 
nm selected and converted to quanta.  
 
Results and Discussion 
NOBM 
   Minor changes in NOBM (see Appendix) necessitated re-evaluation to ensure its performance did 
not degrade from Gregg et al. (2003).  In the 50th year of model execution using climatological 
monthly forcing, basin-scale seasonal chlorophyll variability from the model was statistically 
positively correlated (P<0.05) with those determined from SeaWiFS monthly climatological 
chlorophyll in each of the 12 major oceanographic basins of the world, (see Figure 3) except the 
Equatorial Pacific, which exhibited very little seasonal variability.  Global annual chlorophyll was 
18.2% lower than SeaWiFS.  Annual mean log-transformed dissolved iron concentrations in the 
model surface layer were positively correlated with observations (P<0.05) over the 10 (out of 12) 
major oceanographic basins where data were available (1951 in situ data records derived from the 
general literature, see Gregg et al., 2003 for details).  The South Indian and South Atlantic were the 
basins where dissolved iron data were lacking. 
   Overall patterns of phytoplankton functional group distributions exhibited broad qualitative 
agreement with in situ data (359 surface layer observations, see Gregg et al., 2003 for details).  
Diatoms, cyanobacteria, and coccolithophores each exhibited statistically significant correlation 
with the in situ data across basins.  Chlorophytes did not.  Chlorophytes are a transitional group in 
the model, and they represent a wide range of phytoplankton, such as flagellates, Phaeocystis spp., 
etc.  This expectation is probably unrealistic, and probably accounts for the lack of statistical 
significance in their relative abundances.   
SeaWiFS Assimilation 2001 
   The year 2001 was used to evaluate the effectiveness of chlorophyll assimilation.  Here the free-
run and assimilation models were forced with daily data.  These were from the same sources as in 
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Table 3, except at daily time-varying frequencies.  Daily wind stresses were weighted 80:20 percent 
monthly:daily to minimize transient high wind events. 
   Basin-scale seasonal variability for both the free-run and assimilation models were statistically 
positively correlated with SeaWiFS in all 12 major basins, but the correlation coefficients for the 
assimilation model were much higher (Table 4).  These results suggest the lack of significance for 
the Equatorial Pacific in the climatological model was due to use of climatological forcing. 

   Daily assimilated 
satellite chlorophyll 
from SeaWiFS for 
April 1 compared 
favorably with 
monthly mean 
SeaWiFS data (Fig-
ure 4).  Although 
there was broad 
agreement between 
the free-run model 
and SeaWiFS mon-
thly, the improve-
ment using assim-
ilation was clear.  

SeaWiFS chlorophyll for the same day as the free run and assimilated models is also shown, but 
because of cloud obscuration, sun glint, sensor tilt change, and inter-orbit gaps, it is difficult to 
evaluate the comparison.  This illustrates the additional usefulness of assimilation, in providing 
complete daily coverage. 

   A more quan-
titative description 
of the effectiveness 
of assimilation is 
provided using 
monthly means of 
the assimilation 
model and SeaWiFS, 
and taking the 
difference (Figure 
5).  For March 2001, 
the overall similarity 
of the assimilation 
and SeaWiFS was 
evident, and largely 
supported by the 
difference field.  The 
largest differences 
occurred in the 
Arabian Sea, the 
Congo mouth, and 

Table 4.  Mean annual basin difference from SeaWiFS for the free-run and the assimilation model, and the 
correlation coefficients (r) for the correlation with SeaWiFS seasonal variability for 2001.  An asterisk 
indicates the correlation is significant at P<0.05 
 
 
    Free-run Model  Assimilation Model 
Basin    Difference       r  Difference      r 
North Atlantic      -25.7%  0.891*  -16.8%  0.998* 
North Pacific       -32.5%  0.724*  -20.1%  0.991* 
North Central Atlantic    -32.5%  0.816*  -16.8%  0.819* 
North Central Pacific        36.1%  0.959*         2.1%  0.992* 
North Indian   -64.4%  0.779*  -50.1%  0.871* 
Equatorial Atlantic  -44.0%  0.704*  -26.2%  0.903* 
Equatorial Pacific    -4.3%  0.645*     -4.5%  0.963* 
Equatorial Indian      -22.2%  0.941*  -13.3%  0.974* 
South Atlantic          20.3%  0.865*    -3.6%  0.991* 
South Pacific     70.6%  0.794*          3.4%  0.990* 
South Indian         49.8%  0.725*      6.0%  0.999* 
Antarctic             24.2%  0.903*   -10.7%  0.971*  

Figure 4.  Comparison of chlorophyll (mg m-3) from the assimilation model, the free-run model, and SeaWiFS.  The assimilation and
free-run chlorophyll distributions represent simulations for April 1, 2001.  SeaWiFS data for the same day are shown for comparison,
along with the monthly mean.  Grey indicates land and coast, black indicates missing data, and white indicates sea ice.  
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the Mauritanian coast.  All of these were by design in the assimilation model, with model weighting 
factors largest in these areas of low confidence in SeaWiFS.  In all cases the differences were 

underestimates by 
the assimilation 
model, which was 
desired.  Other 
smaller differences 
occurred in the 
northern extremities 
of the North 
Atlantic, the Pacific 
in the extreme 
western edge of the 
Bering Sea, and in 
the Atlantic sector of 
the Southern Ocean.  
Again the 
differences were 
underestimates by 
the assimilation.  
Overestimates by the 

assimilation were generally small (0.01-0.05 mg m-3 chl).  A couple of notable exceptions were 
offshore of the Somalian coast, and the east-central Indian Ocean, where overestimates by the 
model of 0.05-0.1 mg m-3 occurred. 

   Similar results 
occurred for Sep 
2001 (Figure 6).  
Again the overall 
agreement between 
the assimilation 
model and SeaWiFS 
was good, with 
disparities in similar 
regions, specifically 
the Congo and 
Orinoco River out-
flows, the Arabian 
Sea, and the upper 
northern latitudes.  
There was a band in 
the Equatorial At-
lantic where the 
assimilation model 
overestimated Sea-

WiFS, that did not appear related to the Congo River.  

Fig. 5. Assimilation model chlorophyll (mg m-3), SeaWiFS mean chlorophyll, and the difference (Assimilation-SeaWiFS) for March 2001.

Fig. 6. Assimilation model chlorophyll (mg m-3), SeaWiFS mean chlorophyll, and the difference (Assimilation-SeaWiFS) for Sep 2001.
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   The growth of error as a function of assimilation frequency was tracked using the annual bias and 
uncertainty (Figure 7).  Using daily assimilation, the annual bias was 5.5% relative to SeaWiFS, 
which was a very large improvement over the error for the free-run model at 21.0%.  The 
uncertainty improved from 65.3% in the free-run model to 10.1% in the assimilation model.  The 
error grew as the assimilation frequency decreased.  The uncertainty was still <30% if the 
assimilation occurred every 5 days.  The bias remained <15% for up to a 6-day assimilation 
frequency.  At the other extreme, very low assimilation frequencies, the annual bias and uncertainty 
approached the free-run model.  The lowest assimilation frequency was once per year (every 183 
days) for which the error is indistinguishable from the free-run model. 
SeaWiFS Assimilation 1997-2003 
   A long-term run of the free-run model and the assimilation model for 1997-2003 using monthly 
forcing illustrates the improvement of assimilation in the major oceanographic basins (Figure 8).  
The free-run model produced seasonal variability in good agreement with SeaWiFS basin mean 

chlorophyll, and also 
good correspondence 
with low biases in 
many of the basins, 
such as the North 
Central Pacific, North 
Atlantic, Equatorial 
Pacific, South Indian, 
South Atlantic (Figure 
8a).  There were several 
basins where a 
substantial bias was 
apparent in the free-run 
model.  This was 
particularly true in the 
North Indian and 
Equatorial Atlantic, 
where a large 

underestimate by the model occurred, but also in the spring bloom peaks in the North Pacific and 
Antarctic basins, with underestimates and overestimates buy the model, respectively. 
   The assimilation model kept the seasonal variability agreement with SeaWiFS that the free-run 
model demonstrated, but additionally reduced the basin mean biases (Figure 8b).  The Antarctic and 
North Central Atlantic, which in the free-run model exhibited substantial biases, were now in nearly 
complete agreement.  The large departure in the North Central Atlantic in autumn 1998 
corresponded to a massive dust plume arising from northwestern Africa that was apparently 
undetected by the SeaWiFS processing algorithms (Gregg, 2002b).  It was excluded by the 
assimilation here.  The North Indian and Equatorial Atlantic showed improvement in the 
assimilation model, but still underestimated SeaWiFS.  Model weighting factors were very high in 
these basins because of low confidence in SeaWiFS data (Gregg and Casey, 2004).   
   The assimilation model continued to underestimate the North Atlantic and North Pacific spring 
bloom maximum (Figure 8b).  In the North Atlantic, the underestimation appeared to be worse in 
the assimilation than in the free-run model.  However, the distribution of chlorophyll over the North 
Atlantic was improved by the assimilation (see Figure 4).  The very high spring bloom peaks in  
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Figure 8.  a) SeaWiFS monthly mean chlorophyll (diamonds) and daily chlorophyll from the free-run model (solid line) 
for 1997-2003.
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Figure 8. b)  SeaWiFS monthly mean chlorophyll (diamonds) and daily chlorophyll from the assimilation model (solid line) 
for 1997-2003.  Assimilation of SeaWiFS chlorophyll did not begin until September 1997 (beginning of SeaWiFS data collection).
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SeaWiFS in the North Pacific were not simulated well by either the free-run or assimilation models.  
Most of the high values were derived from extremely high SeaWiFS chlorophyll in the western 
Bering Sea, near Kamchatka. 
   A detailed comparison of the models with in situ data showed major improvement by assimilation.  
The bias and uncertainty of SeaWiFS against the SeaBASS/NODC in situ were -1.3% and 32.7%, 
respectively (Table 5).  The free-run model performed much more poorly against the in situ data set 

than SeaWiFS in uncertainty 
at 61.8%, but comparable 
bias -1.4%.  The assimilation 
model had similar uncertainty 
as SeaWiFS compared to the 
in situ data set (33.4%) but 
improved and nearly 

negligible bias (0.1%).  The assimilation model (as well as the free-run model) had more than twice 
the number of coincident, co-located in situ/model matchup data points.  This is a consequence of 
the absence of gaps in the model record in contrast to SeaWiFS. 
   Global annual primary production estimates from three sources, the VGPM, free-run model, and 
assimilation model, indicated reasonably good correspondence over the 6-year time series for which 

SeaWiFS data were 
used in this effort 
(Figure 9).  Inter-
annual variability 
was mimicked 
among all three 
estimates.  The 
mean of the 6-year 
time series indi-
cated that the free-
run model over-
estimated PP as 
derived from 
VGPM by nearly 
21%.  The assim-
ilation model re-
duced the over-
estimate by nearly 
half, producing a 
more minor over-

estimate of 10.7%. 
 
Summary 
   Assimilation of chlorophyll data from SeaWiFS exhibited substantial improvements over free-run 
simulations.  Biases in basin means were reduced to 5.5% from 21.0%, and mean uncertainties were 
much lower for the assimilation model (10.1%) than the free-run model (65.3%).   This represented 
a nearly 4-fold improvement in bias and a 6-fold improvement in uncertainty.  When compared to in 
situ data for the 6-year time period from 1998 through 2003, the assimilation model had a bias of 

Table 5.  Statistics for the comparison of SeaBASS/NODC chlorophyll data for the period 1998-2003 with 
coincident, co-located SeaWiFS, free-run model and assimilation model chlorophyll.  N indicates the 
number of points where in situ and satellite/model points were coincident and co-located. 
 
         Bias              Uncertainty     N 
SeaWiFS   -1.3%       32.7%  2086 
Free-run Model    -1.4%       61.8%  4465 
Assimilation Model   0.1%       33.4% 4465  

Figure 9.  Annual primary production for the period 1998-2003 from the VGPM, free-run model, and assimilation model.  
The mean departures over the period for the free-run model and assimilation model are indicated.
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0.1%, with an uncertainty of 33.4% for daily coincident, co-located data. SeaWiFS bias was slightly 
higher at -1.3% with similar uncertainty at 32.7%.  The free-run bias and uncertainty at -1.4% and 
61.8%, respectively, indicated how much the assimilation improved model results.  Annual primary 
production indicated a smaller improvement (mean difference from VGPM=10.7% for the 
assimilation model versus 20.9% for the free-run model), representing an improvement of nearly a 
factor of 2, assuming the validity of the VGPM.  These results suggest promise for assimilation of 
satellite ocean chlorophyll into global models.  But they also point to areas of needed improvement.  
The fact that the assimilated variable shows the most improvement is not surprising, and is an 
important attribute for data assimilation.  The fact that flux (primary production) exhibited less 
improvement than biomass (chlorophyll) using assimilation suggests the model continues to trend in 
the wrong direction despite assimilation.  It also suggests that similar results may be expected for 
other non-assimilated variables, such as phytoplankton group distributions and nutrients.  There 
remains considerable work to be done on assimilation of satellite ocean color, such as better 
handling of ocean color data errors, utilizing other model variables in a multi-variate solution, 
accounting for subsurface changes, as well as investigating the potential for using other ocean color 
products, such as diffuse attenuation coefficient at 490 nm, and potentially new products such as 
particulate organic carbon and calcite.  Nevertheless, there is much potential in ocean color 
assimilation, and this effort is intended to represent an initial attempt on a global scale. 
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Appendix.  Biogeochemical processes model description. 
NOBM is based on Gregg et al. (2003).  There are several new features in the biogeochemical 
processes model component: 
-- new maximum phytoplankton growth rates at 20oC 
-- full detrital dynamics with 3 components, fully coupled to the OGCM 
-- a new formulation for the temperature-dependence for grazing 
-- a new formulation for nitrogen fixation for the cyanobacteria component 
-- introduction of dissolved iron scavenging and an increase in atmospheric iron solubility 
-- new nitrogen half-saturation constants for chlorophytes  
-- new iron half-saturation constants for chlorophytes and cyanobacteria 
Other aspects of the biogeochemical processes model are described in Gregg et al (2003), but are 
provided here for completeness. 
 
The governing equations of the model are 
 
Phytoplankton 
∂ 
-- Pi   =   ∇(K∇Pi) - ∇•VPi - ∇•(ws)i Pi + μiPi – γH – κPi                   (A1) 
∂t 
i = 1 = diatoms 
i = 2 = chlorophytes 
i = 3 = cyanobacteria 
i = 4 = coccolithophores 
 
Nutrients 
∂  
-- NN   =   ∇(K∇NN) - ∇•VNN – bn[Σi μiPi] + RαCDC/(C:N)     (A2) 
∂t             
 
∂  
-- NA   =   ∇(K∇NA) - ∇•VNA – bN[Σi μiPi]  + bNε[γH + η2H2]     (A3) 
∂t              
 
∂  
-- NS   =   ∇(K∇NS) - ∇•VNS – bSμ1P1  + RαSDS      (A4) 
∂t              
 
∂  
-- NF   =   ∇(K∇NF) - ∇•VNF – bF [Σi μiPi]  + bF ε[γH + η2H2]  + RαFDF + AFe/L -  θNF (A5) 
∂t              
 
 
NN= nitrate 
NA = ammonium 
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NS = silica 
NI = dissolved iron 
       
Herbivores 
∂  
-- H  =   ∇(K∇H) - ∇•VH + (1-ε)γH – η1H – η2H2      (A6) 
∂t 
 
Detritus 
∂  
-- DC  =  ∇(K∇DC) - ∇•VDC  - ∇•(wd)CDC  -  RαCDC + Φ[κΣi Pi + η1H] + Φ(1-ε) η2H2   (A7) 
∂t 
 
∂  
-- DS  =  ∇(K∇DS) - ∇•VDS  - ∇•(wd)SDS  -  RαSDS + bS[κP1 + γH]     (A8) 
∂t 
 
∂  
-- DF  =  ∇(K∇DF) - ∇•VDF - ∇•(wd)IDF - RαFDF + bF[κΣi Pi + η1H] + bF(1-ε)η2H2 + θNF   (A9) 
∂t 
 
DN = carbon/nitrogen detritus 
DS = silica detritus 
DF = iron detritus 
 
where the symbols and values are identified in Appendix Table 1.  Bold denotes a vector quantity.  
All biological processes are assumed to cease in the presence of sea ice, which is included as an 
external forcing field. 
 
Phytoplankton 
   The growth formulation includes dependence on total irradiance (ET), nitrogen as nitrate plus 
ammonium (NT), silica (Si – for diatoms only), iron (Fe), and temperature (T) 

µi = µmi min[µ(ET)i,µ(NT)i,µ(Si)i, µ(Fe)i] R Gi         (A10) 
where i indicates the phytoplankton functional group index (in order, diatoms, chlorophytes, 
cyanobacteria, and coccolithophores), µ is the total specific growth rate (d-1) of phytoplankton, 
µm is the maximum growth rate at 20oC (Appendix Table 1).  The term µ(ET) represents the 
growth rate as a function solely of the total irradiance (µmol quanta m-2 s-1),  

          ET 
µ(ET) =   -------------                                                                (A11)  
      (ET + kE) 

 
where kE is the irradiance at which µ = 0.5µm and equals 0.5 Ik, where Ik is the light saturation 
parameter.  The nutrient-dependent growth terms are 
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              NO3 
µ(NO3)i =  -----------------                                                       (A12)         
        [NO3 + (kN)i] 

 
              NH4 

µ(NH4)i =  -----------------                                                   (A13)    
        [NH4 + (kN)i] 
 
µ(NT)i = µ(NH4)i + min[µ(NO3)i,1-µ(NH4)i]   (A14) 

 
(Gregg and Walsh, 1992) 
 

           Si 
µ(Si)i =  ---------------                                                              (A15)            
      [Si + (kS)i] 

 
           Fe 

µ(Fe)i =    -------------                                                       (A16) 
       [Fe + (kF)i] 

 
Temperature-dependent growth is from Eppley (1972) 
 

R = 1.066(T-20)                                           (A17) 
 
which produces a temperature-growth factor normalized to 20oC.  The term G in Eq. A10 is an 
additional adjustment used for the cyanobacteria component that reduces their growth rate in 
cold water (<15oC) 

                                        G3 =  0.0294T + 0.558                 (A18)  
 
Gi = 1 for the other three phytoplankton components (i=1,2,4).  This effect conforms to 
observations that cyanobacteria are scarce in cold waters (Agawin et al., 2000; 1998).   The 
cyanobacteria component possesses a modest ability to fix nitrogen from the water column, as 
observed in Trichodesmium spp. (Carpenter & Romans 1991).  The nitrogen fixation is 
expressed as additional growth occurring when nitrogen availability is <(kN)3,  

    µnfix= 0.25exp(-75P3)      (A19) 
where the index 3 indicates cyanobacteria.  The biomass dependence represents a progressive 
community changeover from non-N-fixing cyanobacteria to N-fixing bacteria as the total 
population declines under nitrogen-stressed conditions.  The total N-limited growth rate plus the 
additional growth derived from N-fixation is not allowed to exceed the growth rate where total 
nitrogen = (kN)3.  No accounting for denitrification is made in the model.    
   Photoadaptation is simulated by stipulating 3 states: 50, 150 and 200 (µmol quanta m-2 s-1).  
This is based on laboratory studies which typically divided experiments into low, medium, and 
high classes of light adaptation.  Carbon:chlorophyll ratios (Φ) correspond to the photoadaptation 
state, to represent the tendency of phytoplankton to preferentially synthesize chlorophyll in low 
light conditions, to enable more efficient photon capture.  The three Φ states corresponding to the 
three light states are 25, 50 and 80 g g-1.  The Φ results for diatoms in the model closely mimic 
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Anning et al.’s (2000) results for diatoms.  For irradiance levels falling between the three light 
states, the C:chl ratios are linearly interpolated. 
   Mean irradiance is computed during daylight hours, and then the phytoplankton photoadaptive 
state is classified accordingly.  This calculation is only performed once per day to simulate a 
delayed photoadaptation response.  Light saturation constants for the three light levels are 
provided in Appendix Table 1. 
   Phytoplankton vector sinking is treated as additional advection in the z-direction, and is given 
at 31oC, representing approximately the maximum.  It is adjusted by viscosity according to 
Stokes Law (Csanady, 1986), which is parameterized here by temperature 
 
                                                ws(T) = ws(31)[0.451 + 0.0178T]    (A20) 
 
Coccolithophore sinking rates were allowed to vary as a function of growth rate from 0.3 to 1.4 
m d-1 based on observations by Fritz and Balch (1996).  A linear relationship was assumed 

                     ws4 = 0.752μ4(high) + 0.225                                                        (A21) 
where ws is the sinking rate of coccolithophores (m d-1), μ(high) is the maximum growth rate 
actually achieved for the previous day, and the subscript 4 represents coccolithophores..   
 
Nutrients 
   The diversity in the processes affecting the four nutrient groups requires elucidation in 4 
separate equations, unlike the phytoplankton.  All are taken up by phytoplankton growth, with 
silica subject only to diatom uptake (note the subscript=1 in Eq. A4 denoting diatoms).  For three 
of the nutrients, nitrate, silica, and dissolved iron, corresponding detrital pools remineralize to 
return nutrients previously uptaken by phytoplankton.  There is no detrital pool for ammonium, 
which is excreted as a function of herbivore grazing, and as a function of higher order ingestion 
of herbivores, represented by the term n2H2 in Eqs. A3, A5, A6, A7, and A9.  Dissolved iron also 
has an excretion pathway, but nitrate and silica do not.  The nutrient to chlorophyll ratios, 
denoted b in Eqs. A2-A5, are derived from Redfield ratios, which are constant (Appendix Table 
1) and the carbon:chlorophyll (Φ) ratio which is not.  

bN = Φ/C:N      (A22) 
bS = Φ/C:S      (A23) 
bF = Φ/C:Fe      (A24) 

 This leads to variable nutrient to chlorophyll ratios in the model. 
   As in Gregg et al. (2003) dust deposition fields are derived from Ginoux et al. (2001).  In this 
model, four dust size fractions are transported, corresponding to clay (smallest) and three increasing 
fractions of silt.  The iron content is assumed to vary among the clay and silt fractions as follows: 
clay = 3.5% iron, silt = 1.2% iron (Fung et al., 2000).  Iron solubility is assumed at 2% for all 
fractions, which is toward the low end of current estimates (Fung et al., 2000), but is the same as 
used by Moore et al. (2004).   
 
Herbivores 
 
   Grazing uses an Ivlev formulation (McGillicuddy et al., 1995),  
 

                                               γ(T) = γmRH[1-exp(-Λ∑iPi)]     (A25) 
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RH is the maximum grazing rate at 20o C (γm) adjusted by temperature 
 

    RH = 0.06 exp(0.1T) + 0.70           (A26) 
 
The temperature-dependence for grazing is more linear than that for phytoplankton, reflecting 
the larger size of their overall community.  The grazing represents the total loss of phytoplankton 
to herbivores, as indicated by the summation symbol, but is applied to the individual 
phytoplankton functional groups proportionately to their relative abundances.  This enables 
herbivore grazing to adapt the prevailing phytoplankton community. 
   The two loss terms in Eq. A6 represent the death of herbivores (n1H) and higher order 
heterotrophic losses (n2H2).  These formulations and parameters (Appendix Table 1) were taken 
from McGillicuddy et al. (1995). 
 
Detritus 
  Three detrital components represent the three major nutrient elements, carbon/nitrogen, silica, and 
iron.  The nitrogen detritus is kept as carbon in the model, but since the C:N ratio is constant, it is 
simple to convert when needed.  All are subject to advection, diffusion and sinking.  Detrital 
sinking, like phytoplankton sinking, is dependent on viscosity parameterized here in terms of 
temperature, using the same formulation.  Remineralization is also temperature-dependent, but uses 
the phytoplankton growth-dependence term Eq. A17.  Silica contained in the diatom component of 
phytoplankton is assumed to pass through herbivores upon grazing directly into the silica detritus 
pool.  No silica remains in the herbivore component at any time. 
 
Initial Conditions 
   NOBM underwent a spin-up of a total of 50 years under climatological forcing.  For the first 
20 years, initial dissolved iron conditions were from Fung et al. (2000), and nitrate and silica 
distributions were from annual climatologies from National Oceanographic Data Center (NODC; 
Conkright et al., 2002b).  Ammonium initial conditions were set to 0.5μM.  Initial conditions for 
all phytoplankton groups and herbivores were set to 0.05 mg m-3 chl throughout the entire model 
domain.  Initial conditions for detritus were set to 0.  After 20 years, dissolved iron and detritus 
distributions were retained, while all other fields were reset to their original values.  The model 
was run again for 30 years.  This methodology enables dissolved iron to reach steady state 
without adversely impacting phytoplankton group distributions with excessively low initial 
values. 
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Appendix Table 1. Notation and parameters and variables for NOBM.  Values are provided for the 
parameters and ranges are provided for the variables.  When a parameter varies according to 
temperature, the value at a specified temperature is shown and identified.  Nutrient/chlorophyll 
ratios are variable because of photadaptation-dependence, and only the range is shown, 
corresponding to low-, and high-light adaptation, and therefore also corresponding to C:chl ratios of 
20 and 80 g g-1. 
 
Symbol Parameter/Variable   Value   Units 
 General 
  K  Diffusivity     Variable  m2 s-1 

  ∇  Gradient operator   none    none 
  V  Vector velocity   Variable  m s-1

  L  Layer thickness   Variable  m 
 
 Phytoplankton 
  ws  Vector sinking rate of phytoplankton at 31oC   m d-1 

   diatoms   1.0 
   chlorophytes   0.25 
   cyanobacteria   0.0085 
   coccolithophores  0.3-1.4 
  μ  Specific growth rate of phytoplankton    d-1 

  maximum (μm) at 20oC: 
   diatoms   1.50 
   chlorophytes   1.26 
   cyanobacteria   1.00 
   coccolithophores  1.13 
  Ik  Light Saturation      μmol quanta m-2 s-1 

   Light level: Low (50) Medium (150)  High (200) 
diatoms      90.0   93.0    184.0 

   chlorophytes      96.9   87.0    143.7 
   cyanobacteria      65.1   66.0        47.0 

coccolithophores  56.1   71.2    165.4 
  κ  Senescence    0.05   d-1 

   kE  Half-saturation for growth as  0.5Ik  μmol quanta m-2 s-1

   function of quanta 
   ET  Total quanta (direct+diffuse)  variable  μmol quanta m-2 s-1 

  R  Temperature-dependence for growth 0.25-9.4  none 
  G  Temperature-dependence for  0.5-1.0   none 
   cyanobacteria growth 
 
 
Nutrients (N) 
  bN,S,F    Nutrient:chlorophyll ratio     μM (μg l-1)-1

nitrogen   0.3 – 1.0       

silica    0.3 – 1.0       

      iron    0.01 – 0.04       
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  ε  Nutrient excretion       d-1

nitrate    0.0    
ammonium   0.25    
silica    0.0    
iron     0.25    

   
  kN,S,F  Half-saturation constant   

nitrogen      μM 
 diatoms  1.0 
 chlorophytes  0.67 
 cyanobacteria  0.50 
 coccolithophores 0.50 
silica       μM 
 diatoms  0.2 
iron       nM 
 diatoms  1.0 
 chlorophytes  0.78 
 cyanobacteria  0.67 
 coccolithophores 0.67 

  θ  Iron scavenging rate       d-1

   Low iron (<0.06nM)   2.0x10-4

High iron (>0.06nM)  2.0x10-3 

AFe  Atmospheric deposition of iron 0.03-967.0  nmol m-2 d-1 

C:N  Carbon:nitrogen ratio   79.5   μg l-1 (μM )-1

C:S  Carbon:silica ratio   79.5   μg l-1 (μM )-1

C:Fe  Carbon:iron ratio   1800   μg l-1 (nM )-1

 
 Herbivores (H) 
  γ  Grazing rate     
     Maximum (γm) at 20oC 1.0    d-1

 Λ  Ivlev constant    1.0   (μg l-1)-1

η1, η2  Heterotrophic loss rates  0.1,0.5   d-1 

 RH  Temperature-dependence  0.75-2.7  none 
   for grazing 
 
Detritus (D) 
  wd   Vector sinking rate of detritus at 31oC   m d-1 

carbon/nitrogen detritus 20.0    

silica detritus   50.0    

iron detritus   20.0    

   αC,S,F  Remineralization rate at 20oC     d-1 

carbon/nitrate   0.02    
silica    0.0001    
iron     0.02  

  Φ  Carbon:chlorophyll ratio  Variable  g g-1  
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